博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
kaldi通用底层矩阵运算库——CUDA
阅读量:4953 次
发布时间:2019-06-12

本文共 6463 字,大约阅读时间需要 21 分钟。

cudamatrix/cublas-wrappers.h

该头文件对cuBLAS的接口进行了简单的封装(函数名的简化和部分kaldi函数的封装)。

比如

cublasSgemm_v2封装为cublas_gemm

cublas_copy_kaldi_fdcublas_copy_kaldi_df封装为cublas_copy

   

cudamatrix/cu-kernels.{h,cu}

   

以cuda_add_col_sum_mat函数为例

对Kaldi cuda kernel或cublas进行了简单的封装(针对不同精度浮点型)

cudamatrix/cu-kernels.h

namespace kaldi {

   

inline void cuda_add_col_sum_mat(int Gr, int Bl, double* result,

const double* mat, const MatrixDim d,

const double alpha, const double beta) {

cudaD_add_col_sum_mat(Gr, Bl, result, mat, d, alpha, beta);

}

inline void cuda_add_col_sum_mat(int Gr, int Bl, float* result,

const float* mat, const MatrixDim d,

const float alpha, const float beta) {

cudaF_add_col_sum_mat(Gr, Bl, result, mat, d, alpha, beta);

}

//...

}

kernel的定义

cudamatrix/cu-kernels.cu

// Reduce a matrix 'mat' to a column vector 'result'

template<EnumTransformReduce TransReduceType, typename Real>

__global__

static void _transform_reduce_mat_cols(

Real *result, const Real *mat, const MatrixDim d,

const TransReduceOp<TransReduceType, Real> op) {

   

__shared__ Real sdata[CU1DBLOCK];

const int tid = threadIdx.x;

const int i = blockIdx.x;

const int row_start = i * d.stride;

   

Real tdata = op.InitValue();

for (int j = tid; j < d.cols; j += CU1DBLOCK) {

tdata = op.Reduce(tdata, op.Transform(mat[row_start + j]));

}

sdata[tid] = tdata;

__syncthreads();

   

// Tree reduce

# pragma unroll

for (int shift = CU1DBLOCK / 2; shift > warpSize; shift >>= 1) {

if (tid < shift)

sdata[tid] = op.Reduce(sdata[tid], sdata[tid + shift]);

__syncthreads();

}

   

// Reduce last warp. Threads implicitly synchronized within a warp.

if (tid < warpSize) {

for (int shift = warpSize; shift > 0; shift >>= 1)

sdata[tid] = op.Reduce(sdata[tid], sdata[tid + shift]);

}

   

// Output to vector result.

if (tid == 0) {

result[i] = op.PostReduce(sdata[0], result[i]);

}

}

   

void cudaD_add_col_sum_mat(int Gr, int Bl, double* result, const double* mat,

const MatrixDim d, const double alpha,

const double beta) {

_transform_reduce_mat_cols<<<Gr, Bl>>>(result, mat, d,

TransReduceOp<SUMAB, double>(alpha, beta));

}

   

   

   

cudamatrix/cu-vector.h

与matrix/kaldi-vector.h类似的,该头文件声明了几个向量类。与之不同的是,但其运算的实现基于CUDA或CBLAS。

class CuVectorBase

Cuda向量抽象类。该类对基础运算与内存优化进行了封装,只提供向量运算不涉及尺寸缩放和构造函数。

   

尺寸缩放和构造函数由派生类CuVectorCuSubVector负责。

   

向量初始化

void SetZero();

向量信息

MatrixIndexT Dim() const { return dim_; }

向量的读取与转换

inline Real* Data() { return data_; }

inline Real operator() (MatrixIndexT i) const

CuSubVector<Real> Range(const MatrixIndexT o, const MatrixIndexT l)

向量的拷贝函数

void CopyFromVec(const CuVectorBase<Real> &v);

向量的运算

void ApplyLog();

void AddVec(const Real alpha, const CuVectorBase<OtherReal> &v, Real beta = 1.0);

//*this += alpha * M [or M^T]

//linear_params_.AddMat(alpha, other->linear_params_);

//linear_params_ += alpha * other->linear_params_

void AddMat ( const Real alpha,

const MatrixBase< Real > & M,

MatrixTransposeType transA = kNoTrans

)

   

//*this = alpha * diag(M * M^T) + beta * *this

diag(M M^T)+beta ** M

(1 2 3)

(4 5 6)

(7 8 9)

   

(1 4 7)

(2 5 8)

(3 6 9)

(1^2+2^2+3^2, *, *)

(*, 4^2+5^2+6^2, *)

(*, *, 7^2+8^2+9^2)

diag=()

void CuVectorBase<Real>::AddDiagMat2(Real alpha, const CuMatrixBase<Real> &M,

MatrixTransposeType trans, Real beta) {

//*this = alpha * diag(M * M^T) + beta * *this

this->AddDiagMatMat(alpha, M, trans, M, other_trans, beta);

}

   

//*this = alpha * diag(M * N^T) + beta * *this

void CuVectorBase<Real>::AddDiagMatMat(Real alpha, const CuMatrixBase<Real> &M,

MatrixTransposeType transM,

const CuMatrixBase<Real> &N,

MatrixTransposeType transN, Real beta) {

// v = alpha * diag(M * N^T) + beta * v

static void _add_diag_mat_mat_MNT(const Real alpha, const Real* M,

const MatrixDim dim_M, const Real* N,

const int stride_N, const Real beta,

Real* v)

//data_ = alpha * diag(M.Data() * N.Data()^T) + beta * data_

cuda_add_diag_mat_mat_MNT(dimGrid, dimBlock, alpha, M.Data(), M.Dim(),

N.Data(), N.Stride(), beta, data_);

   

class CuVector: public CuVectorBase<Real>

该类表示普通Cuda向量,并实现尺寸缩放一般的构造函数

   

多种构造函数

explicit CuVector(const CuVector<Real> &v) : CuVectorBase<Real>() {

Resize(v.Dim(), kUndefined);

this->CopyFromVec(v);

}

   

template<typename OtherReal>

explicit CuVector(const CuVectorBase<OtherReal> &v) : CuVectorBase<Real>() {

Resize(v.Dim(), kUndefined);

this->CopyFromVec(v);

}

   

template<typename OtherReal>

explicit CuVector(const VectorBase<OtherReal> &v) : CuVectorBase<Real>() {

Resize(v.Dim(), kUndefined);

this->CopyFromVec(Vector<Real>(v));

}

重载赋值运算符

CuVector<Real> &operator = (const CuVectorBase<Real> &other) {

Resize(other.Dim(), kUndefined);

this->CopyFromVec(other);

return *this;

}

   

CuVector<Real> &operator = (const CuVector<Real> &other) {

Resize(other.Dim(), kUndefined);

this->CopyFromVec(other);

return *this;

}

CuVector<Real> &operator = (const VectorBase<Real> &other) {

Resize(other.Dim());

this->CopyFromVec(other);

return *this;

}

Utils

void Swap(CuVector<Real> *vec);

void Swap(Vector<Real> *vec);

void Resize(MatrixIndexT length, MatrixResizeType resize_type = kSetZero);

class CuSubVector: public CuVectorBase<Real>

该类表示一个不占有实际数据的泛化向量或向量索引,可以表示高级向量的子向量或矩阵的行。实现多种用于索引的构造函数

   

多种构造函数

CuSubVector(const CuVectorBase<Real> &t, const MatrixIndexT origin,

const MatrixIndexT length) : CuVectorBase<Real>() {

KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(origin)+

static_cast<UnsignedMatrixIndexT>(length) <=

static_cast<UnsignedMatrixIndexT>(t.Dim()));

CuVectorBase<Real>::data_ = const_cast<Real*>(t.Data()+origin);

CuVectorBase<Real>::dim_ = length;

}

/// Copy constructor

/// this constructor needed for Range() to work in base class.

CuSubVector(const CuSubVector &other) : CuVectorBase<Real> () {

CuVectorBase<Real>::data_ = other.data_;

CuVectorBase<Real>::dim_ = other.dim_;

}

   

CuSubVector(const Real* data, MatrixIndexT length) : CuVectorBase<Real> () {

// Yes, we're evading C's restrictions on const here, and yes, it can be used

// to do wrong stuff; unfortunately the workaround would be very difficult.

CuVectorBase<Real>::data_ = const_cast<Real*>(data);

CuVectorBase<Real>::dim_ = length;

}

cudamatrix/cu-matrix.h

与matrix/kaldi-matrixr.h类似的,该头文件声明了几个矩阵类。与之不同的是,但其运算的实现基于CUDA或CBLAS。当Kaldi基于CUDA环境编译且GPU可用(CuDevice::Instantiate().Enabled() == true)则使用CUDA卡进行计算,否则使用CPU进行计算(CBLAS)。

   

class CuMatrixBase

Cuda矩阵抽象类。该类对基础运算与内存优化进行了封装,只提供矩阵运算不涉及尺寸缩放和构造函数。

   

尺寸缩放和构造函数由派生类CuMatrixCuSubMatrix负责。

   

class CuMatrix

该类表示普通Cuda矩阵,并实现尺寸缩放一般的构造函数

   

class CuSubMatrix

该类表示一个不占有实际数据的泛化矩阵或矩阵索引,可以表示其他矩阵的矩阵。实现多种用于索引的构造函数

继承于CuMatrixBase,用于对矩阵的子矩阵(块矩阵)进行运算。

   

转载于:https://www.cnblogs.com/JarvanWang/p/10280978.html

你可能感兴趣的文章
CUDA学习1 在Visual Studio和CodeBlocks上配置
查看>>
JavaScript(6)——事件1.0
查看>>
2013 ACM-ICPC China Nanjing Invitational Programming Contest 总结
查看>>
【Hibernate学习笔记-5】@Formula注解的使用
查看>>
链接元素<a>
查看>>
Binding object to winForm controller through VS2010 Designer(通过VS2010设计器将对象绑定到winForm控件上)...
查看>>
Spring Boot实战笔记(二)-- Spring常用配置(Scope、Spring EL和资源调用)
查看>>
前端性能优化集【持续更新】
查看>>
第二章:webdriver 控制浏览器窗口大小
查看>>
四则运算2初步构思
查看>>
Break the Chocolate(规律)
查看>>
C#jbox小节
查看>>
结构体指针释放的问题
查看>>
C#枚举Enum[轉]
查看>>
第三百五十七天 how can I 坚持
查看>>
【动态规划】流水作业调度问题与Johnson法则
查看>>
startActivityForResult不起作用
查看>>
Python&Selenium&Unittest&BeautifuReport 自动化测试并生成HTML自动化测试报告
查看>>
活现被翻转生命
查看>>
POJ 1228
查看>>